Tech Deep Dive

The Weebit Nano Blog details the latest happenings around the company’s ReRAM/RRAM technology milestones and commercial developments

AI training happens in the cloud because it’s compute-intensive and highly parallel. It requires massive datasets, specialized hardware, and weeks of runtime. Inference, by contrast, is the deployment phase — smaller, faster, and often done at the edge, in real...

Resistive RAM (ReRAM or RRAM) is the strongest candidate for next-generation non-volatile memory (NVM), combining fast switching speeds with low power consumption. New techniques for managing a memory phenomenon called ‘relaxation’ are making ReRAM more predictable — and easier to...

In the last 60 years technology has evolved at such an exponentially fast rate that we are now regularly conversing with AI based chatbots, and that same OpenAI technology has been put into a humanoid robot. It’s truly amazing to...

One of the most exciting things about the future of computing is the ability to process data inside of the memory. This is especially true since the industry has reached the end of Moore’s Law, and scientists and engineers are...

One of the key advantages of Weebit ReRAM (RRAM) is the technology’s ultra-low power consumption. Some of this advantage is due to the inherent features of the technology, and some of it is due to smart design. In this article...

A paper from Weebit and our partners at CEA-Leti and the Nano-Electronic Device Lab (NEDL) at Politecnico di Milano was recently published in the prestigious journal Nature Communications. It details how bio-inspired systems can learn using ReRAM (RRAM) technology in...

We recently collaborated with our friends at IIT-Delhi, led by Prof. Manan Suri, on a research project demonstrating an efficient ReRAM based in-memory computing (IMC) capability for a similarity search application. The demonstration was done on 28nm ReRAM technology developed...

As embedded memories move below 28nm process geometries, it is becoming more and more complex and expensive to scale standard memories that are charge-based (those that store data as an electrical charge like flash) and integrate them with advanced CMOS...